NCT Research


The availability and usage of large scale, high-throughput technologies such as next generation sequencing (NGS) has exploded in recent years. At the same time these technologies have found their way into direct patient care. All of these technologies generate large amounts of data that need to be managed and analyzed. The Omics IT and Data Management Core Facility (ODCF) at DKFZ supports scientists and physicians to securely store and analyze these data in a structured and efficient manner. On the one hand, we import, structure, store and analyze (alignment, variant calling) NGS data directly using our software OTP ( On the other hand, in cooperation with the DKFZ IT-Core Facility, we operate a compute cluster with a large stack of pre-installed scientific software for scientists to perform custom analyses.

OTP is equipped with a graphical user interface allowing the scientist to keep an easy overview of their sequencing projects. Here we provide basic information about the samples (metadata) as well as quality measures concerning the data and results. In addition, the user interface displays all project members and allows the responsible PI to manage access rights and roles in a transparent manner.

All sequencing data produced by the NCT Molecular Diagnostics is automatically imported and managed by ODCF.

Contact: or

The Genomics and Proteomics Core Facility (GPCF) at the DKFZ is a central research infrastructure providing access to sophisticated and expensive key technologies that are of critical relevance in biomedical science and which would otherwise not be accessible to the center’s research groups. Our services are open to external users subject to available capacities. Dedicated and trained personnel ascertain fast turnaround times of high-quality data and information. Quality standards have been developed to keep tight quality control during all processes. The table below presents all workflows currently established in the Sequencing Unit and the Microarray Unit.

Sequencing Unit

  • Exome Sequencing
  • Amplicon Sequencing
  • Whole Genome Sequencing
  • Whole Genome Bisulfite Sequencing
  • RNA Sequencing
  • Small RNA Sequencing
  • Low Amount RNA Sequencing
  • ChIP Sequencing
  • Sequencing of Custom Libraries/Multiplexes

Microarray Unit

  • Methylation Analysis (incl. FFPE)
  • Hydroxymethylation Profiling
  • mRNA Expression Profiling (incl. low quantity and FFPE)
  • microRNA Profiling
  • Genotyping (incl. FFPE)
  • Kinase Activity Profiling

Dr. Stephan Wolf:
Dr. Melanie Bewerunge-Hudler:
» DKFZ GPCF Homepage

Next generation sequencing requires the use of high quality analytes for precision and reproducibility. The Sample Processing Laboratory (SPL) provides expertise in the controlled isolation of DNA, RNA, and proteins from different sources of material such as tissue biopsies, FFPE tissue blocks, blood, saliva and cells followed by state-of-the-art quality control measures (standardized fluorometric concentration measurements and integrity check of DNA/RNA samples using automated low-volume techniques). Samples are registered, tracked and stored with a sample-specific identifier and every processing step is documented in the SPL database. Our service also includes the transfer of suitable samples to the DKFZ Genomics and Proteomics Core Facility (GPCF) for sequencing or array analyses. So far, approximately 15,500 analytes have been transferred to the GPCF for whole exome/whole genome sequencing and transcriptome analysis as well as about 2,600 analytes for methylation analysis.

In addition to our routine sample preparation techniques we are constantly developing and optimizing extraction and QC procedures for new methods (e.g. circulating cell-free tumor DNA/RNA from liquid biopsies, RNA from FFPE tissue). We closely work together with our project partners on initial extraction advice and testing as well as on protocol adaptations according to specific project requirements.
Since 2017 we successfully take part in round robin tests and are currently working towards accreditation by the “Deutsche Akkreditierungsstelle” (DAkkS) as an official testing laboratory according to DIN EN ISO/IEC 17025. The external audit by DAkks staff was held in November 2019 and accreditation was recommended by both, system and specialist field auditor.

In addition to our participation in the NCT Molecular Diagnostics Program we also offer our service for all NCT and DKFZ members. Please do not hesitate to contact us in case of any questions:

The application of next generation sequencing and other high-throughput screening techniques for precision oncology requires advanced bioinformatics methods for data analysis and the generation of interpretable results. Computational Oncology (CO, headed by D. Hübschmann) is a research group in the Molecular Diagnostics Program (headed by S. Fröhling and P. Lichter) of the National Center for Tumor diseases (NCT) Heidelberg and the German Cancer Research Center (DKFZ). CO is responsible for (a) the bioinformatic analyses behind the Molecular Tumor Boards (MTBs) in several precision oncology programs as well as for (b) cohort analyses and unsupervised discovery projects.

a) MTBs and precision oncology programs: CO provides data analysis for DKTK/NCT-MASTER (Molecularly Aided Stratification for Tumor Eradication Research) as well as CATCH (Comprehensive Assessment of Clinical Features and Biomarkers To Identify Patients with Advanced or Metastatic Breast Cancer for Marker Driven Trials in Humans) and COGNITION (Comprehensive assessment of clinical features, genomics and further molecular markers to identify patients with early breast cancer for enrolment on marker driven trials). This involves basic steps of NGS data analysis including alignment and quality control (QC), as well as variant calling and pre-filtering of clinically interesting and/or targetable mutations. Starting from sets of somatic variants for each tumor, extensive annotation will cover matches in databases of drug targets, known cancer driver mutations and germline predisposition variants. Interpretation of variant sets will rank those that are potentially therapeutically relevant and associate them to systemic cancer treatments. Incorporating oncological expertise, the evidence level for each candidate mutation will then be determined from literature and clinical trial information.

b) Cohort analyses: CO is in charge of NGS analyses for projects covering a wide range of cancer entities as well as different data types. A major goal is the provision of standardized, state-of-the-art data processing and analysis workflows. Currently, CO is involved in the application and development of the following workflows for central and standardized data processing:
a. alignment of whole genome, whole genome bisulphite, exome, ChIP and RNA sequencing data (and variants of these technologies)
b. somatic variant calling of single nucleotide variants (SNVs) insertions and deletions (indels), structural variation (SVs), and copy number abberations (CNAs)
c. methylation calling

c) Furthermore, CO focuses on the development of resources to facilitate the exploration of high dimensional data sets, self learning cohort analysis tools, adoption of responsible and reproducible bioinformatics practices, and organizing training for clinical bioinformatics analysis together with the clinical bioinformatics team.

CO develops and maintains its code base in close collaboration with the Omics IT and Data Management Core Facility (ODCF, headed by I. Buchhalter), the Bioinformatics and Omics Data Analytics group (BODA, headed by M.Schlesner) and the Applied Bioinformatics division (ABI, headed by B.Brors). In the framework of the MTBs, CO is intimately linked to the respective clinical divisions Translational Medical Oncology (TMO, headed by S. Fröhling) and Gynecologic Cancers / Breast Cancer (headed by A. Schneeweis).

Daniel Hübschmann: